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Image classification

Assume given set of pathology
P | 1 categories (labels):
A '- {normal, cardiac hypertrophy,

aortic sclerosis, lung
infiltration, ...}

—> cardiac hypertrophy




Chest X-rays pathology categories

Lung infiltration mall pulmonary nodu l

Multiple pathologies per patlent




Multi-Class Multi-Label Multi-label

K=3 | Samples Samples . i

vAg A

fe | [oll][C] | Bdlc 1G] | classification
( Labels Y Labels Y

O [001] [100] [010] [101] [010] [111]

m Each image can belong to more than one pathology category
(class).

m The outcome vector Y = (Y, -+, Yr) will be a one-hot vector
(i.e.,, Y, = 1 or 0, Vk) with more than a positive class (i.e.,
Y, = 1), so it will be a vector of 0’s and 1's with K

dimensionality.

m This task is treated as K different binary and independent
classification problems.




Multi-label classification: example

m A dataset containing chest x-ray images with disease labels
m Each image can belong to more than one of the following 4

abnormalities : /O\EAE AR ~ EEIRIE(L - fHAUEN ~ B

m SetY = (Y ymie i ¥ iR
Vi ¥ 5 4

m For/UgRE R+ E#AKIEL, ¥ = (1,1,0,0)

m ForBHEfm&Eonly, Y = (0,0,0,1)

m ForlE'=, Y = (0,0,0,0)




Multi-label classification

B May have more than one class to be assigned and the label vector may be O
or 1 in each element.
eZk
1+e?k’

B Activation function : sigmoid o(z;) = k=1 K

B Loss function : batch weighted binary cross-entropy (oW-BCE)

Lbw—BCE = Xy ( ) {,BPj 2k Y k=1 [— In (a (fk(xjm)))] +




Transfer learning

When

What

B Training data extremely limited in some professional fields

B Training data and testing data may follow different distributions

B Transfer the trained parameters to a new model in order to
accelerate and optimize the process of training

B |nherit the existing neural network and adjust it for new data

B Standing on the shoulders of giants
B Training cost can be very low

B Suitable for learning tasks in small datasets
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Transfer learning

[ Source data } [ Target data }

Layer transfer

Backbone model ::> Backbone model

[ Full-connected layer } [ Full-connected laver }

¥ b J

{ Final prediction }

Prediction

S




Target dataset (E-DA Chest X-ray )

heart pacemaker placement

heart pacemaker placement

Categories Sample Size Subcategory Sample Size
normal 1314 normal 1314
aortic arch atherosclerotic plague 28
. iy . ) aortic arch calcrfication 16
aortic sclerosis/calcification 91 :
aortic atherosclerosis 25
aortic wall calcification 22
. _ _ Aortic curvature 67
arterial curvature 96
Thoracic vertebral artery curvature 29
small pulmonary nodules 5
. e shadows of pulmonary nodules 8
abnormal lung fields 33 - = — =
tuberculosis o)
pulmonary fibrosis 15
increased lung streak 24
increased lung patterns 154 lung field infiltration 85
obvious hilar 45
_ . . degenerative joint disease of the thoracic spine 76
spinal lesions 151 —— -
scoliosis 75
intercostal pleural thickening 36 intercostal pleural thickening 36
cardiac hypertrophy 42 cardiac hypertrophy 42
7 7

Source : E-DA hospital

Size: 1924

Category : 19

Data type : DICOM

Image size:
1824~2688 pixels in length
1536~2680 pixels in width
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Source datasets

C ategory Name Class Si1ze Sinularity with the target data
Source data ImageNet 22,000 + 15 mullion+ Not closed
Source data CheXpert 14 224,316 Closed
Source data NIH Chest X-ray 14 112,120 Closed
CheXpert
B Size: 224,316
B Category: 14
Cons.olwdatlon B Data type PNG
e B Image size : 1024*1024
Edema B Source :

40000 60000 80000 100000

B Characteristic : uncertain label u
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https://stanfordmlgroup.github.io/competitions/chexpert/

NIH Chest X-ray

Hemia
Pleural_Thickening
Fibrosis
Emphysema
Edema
Consolidation
Pneumothorax
Pneumonia
MNodule

Mass
Infiltration
Effusion
Cardiomegaly
Atelectasis

0 2500 5000 7500 10000 12500 15000 17500 20000

Size: 112,120

Category : 14

Data type : PNG

Image size : 1024*1024

Source :

Characteristic : the labels are expected to be over 90% accurate and suitable for weakly-supervised learning.
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https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345

Flow chart

Source data :
CheXpert, NIH Chest X-ray. ImageNet

l

4 N
Different approaches to Transfer Learning:

* ResNet 50 Regular Transfer Learning
Mixed model
* DenseNet121 Co-trained model
\- /
¥
4 o Wei ™ 4 A

Pre-trained Weight:
ImageNet Target data:

CheXpert
NIH Chest X-ray E-DA Chest X-ray
ImageNet + CheXpert \_ Y,
ImageNet + NIH Chest X-ray
Mixed model (CheXpert)

Mixed model (NIH Chest X- rav)
Co-trained model

\ / Image Argumentation J

¥

" 8 =8 8 =8 B @




Flow chart

p
Fine-Turn Model:
® BesNet 50
e DenseNet 121
.

-

Evaluation:

ATC
K-fold cross-validation Average precision

Hamming Loss
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Pre-processing

Target data (E-DA Chest X-ray) :

Removing replicate images .

Merge original diseases and discard the class “heart pacemaker placement”
Transform the DICOM format into PNG for saving memory.

Resize the images into 512*512.

Remove the fourth channel of these images.

Use image Argumentation to randomly generate different images.
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The format of x-ray image

m DICOM: Digital Imaging and Communications in Medicine

Header

* Dose

* Image . DistanceSou.rceToDet.ector.: 1800
Image Matrix « Width: 1944 DistanceSourceloPatient: 1770
Height: 2448 KVP-100
BitDepth: 12 ExposureTime: 11
ColorType: 'grayscale® Xray TubeCurrent: 400

* ImagerPixelSpacing * Exposure: 4
e Patient . Tran.sformat'ion I
* PixellntensityRelationshipSign: 1
PixellntensityRelationship: 'LOG'
WindowCenter: 2048
WindowWidth: 4096
Presentation. UTShape: TNVERSE'

* PatientName

e PatientID

* PatientBirthDate
* PatientSex
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Pre-processing: Inverse attenuation,
contrasting

Fluoroscopy __ Radiography Radiography

Attenuation Inversed Attenuation Inversed Attenuation
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Pre-processing: Image augmentation

LSO LAY

Original Rotate Shift Shear Zoom

LA T L

Rescale Horizontal flip Vertical flip Gaussian
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Pre-processing

Source data (CheXpert and NIH Chest X-ray) :
B Resize the images into 512*512.

B Replicate the one-channel image three times and remove the fourth channel of

the four-channel images.

To deal with the uncertainty label of CheXpert, we reconstruct a five-dimension label

vector according to the original paper, then take it as a five class multi-label

Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

U-Ignore 0.818 (0.759,0.877) (0.934 (0. 89"‘5 0.975) D 9”’8 tD 894 0. %’?‘}
U-Zeros 1 s
0.858 (0.806.0.910)

(.840 (0.783,0.897)
U-Ones % NEERIR:

D.941 (0. 90'% 0.980 D 9"?4 (0. 90] 0. %?‘}
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CNN architectures

Convolution Pooling Convolution

Pooling

Fully

Fully Output Predictions

Connected Connected

------- e dog (0.01)
I cat (0.04)
boat (0.94)
bird (0.02)
I £ -

Input Feature extraction

Classification
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Back-bone CNN model

ResNet DenseNet
residual learning dense shortcuts
Innovation shortcuts connection feature reuse
no degradation transition layer
Output in L layer X =H (X )+ X 1 X 1= H ([Xgs Xqs -5 X(15])
Splicing method element-wise add concatenate
training speed fast slow
Number of parameters big small

o RiR

ResNet

(\ DenseNet
- \-++




Parameter settings

Parameters Settings
Input size 512%512%*3
Optimizer Adam
Learning rate 0.0001
Batch size 16
Epochs 30
Loss Weighted binary cross-entropy
Metrics Binary accuracy, Mae

B Dropout layer when training pre-
trained weights

B GAP (global average pooling layer) to
reduce dimension instead of flatten.

B | earning rate scheduler to speed up

convergence
SEHHP ¢
QETEE
© 0 QEFFFY = v
H PNoN- NN o
T eee ® % =
0000

w==606 22



Approaches for transfer learning

1. Regular transfer learning
2. Mixed model

3. Co-trained model

23



Regular transfer learning

Combined Dataset

ImageNet + CheXpert
ImageNet + NIH Chest-ray

ResNet 50 :E:
DenseNet 121
Single Dataset
ImageNet

CheXpert
NIH Chest X-ray
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Mixed model

{ Image }
| I
/—% e A\
Model: Model:
CheXpert
ImageNet or
NIH Chest X-ray .
e B Pros: Expand features from two different
\ J J .
| | domains
B Cons: Cost twice the memory and time to
Concatenate features store and upgrade the parameters
Global average pooling
(GAP)

h

{ Full-connected }

layer

25




Co-trained model

CheXpert

One batch a time

NIH chest X-ray

Layer transfer

—

{ Full-connected layer }

{ Full-connected layer }

E-DA chest X-ray

Backbone model

Full-connected layer

h

Final prediction
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Evaluation metrics

B Stratified A<fold cross-validation :

with package “MultilabelStratifiedKFold” FN

B Metrics:
FP TP
1. ROC curve and AUC : FPR = T TPR = STEN
2. Precision curve and Average precision : Recall = oTEN = TPR,
Precision = e
3. Hamming Loss :

1 N XOR(YU,PU) 1, lfx F Yy
hipss= Nzi:1 7 ,Where XOR(x,y): 0 e = 5
o1 Yy
(1Y

threshold = (1 — Pl-j)
27



Three different perspectives

1. Backbone model selection : ResNet 50 vs. DenseNet 121.
2. Source data selection : ImageNet vs. CheXpert vs. NIH chest X-ray
3. Combination method selection :

Regular transfer learning vs. Mixed model vs. Co-trained model

28



Backbone model selection

AVERAGE PRECISION SCORE AUC HAMMING LOSS
ResNet 50 DenseNet 121 ResNet 50 DenseNet 121 ResNet 50 DenseNet 121
*IR *IR
IR 0.84 0.6
0.25 Co-trained 0.82 *NR Co-trained 0.5 *NR
Co-trained 0.2 *NR 0.8 ue
0.3
0:15 0.78
0.2
0.05 Mixed(CheXpert) 0.74 *NI Mixed(CheXpert) 0 *N|
Mixed(CheXpert) 0 *NI
- R Mixed(NIH) *XR Mixed(NIH) *XR
*X| *XI *XI

B For regular transfer learning the ResNet 50 performs better. On the contrary, the
DenseNet 121 performs better in the mixed model and the co-trained method.

B DenseNet performs almost twice worse than ResNet in the hamming loss, which
might be due to the dense-connection in DenseNet.
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Source data selection

ResNet 50 DenseNet 121
Training Testing Training Testing
Dataset Binary accuracy MAE AP AUC Dataset Binary accuracy MAE AP AUC
ImageNet | 93.53% (+/-0.45%) 0.07 (+/-0.00) 0.214 0.796 ImageNet | 91.56% (+/-1.21%) 0.11(+/-0.01) 0.204 0.803
CheXpert | 81.85% (+/-7.80%) 0.20 (+/-0.08) 0.191 0.806 CheXpert | 79.88% (+/-9.99%) 0.23(+/-0.09) 0.169 0.781
NIH 87.85% (+/-1.71%) 0.14 (+/-0.02) 0.209 0.831 NIH 80.70% (+/-12.10%) 0.22(+/-0.11) 0.171 0.8

B The NIH dataset performs better than CheXpert, the reason may due to the
uncertain labelling.

B [mageNet performs better than the NIH dataset in training process, but the
performance becomes even worse in the testing process.
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Combination method selection

Method

Regular
Transfer
learning

Mixed model

Co-trained

Method

Regular
Transfer
learning

Mixed model

Co-trained

Dataset
ImageNet + CheXpert
ImageNet + NIH
ImageNet + CheXpert

ImageNet + NIH
CheXpert + NIH

Dataset
ImageNet + CheXpert
ImageNet + NIH

ImageNet + CheXpert
ImageNet + NIH
CheXpert + NIH

ResNet 50

Binary accuracy
85.22% (+/-3.59%)
86.82% (+/-2.04%)
92.97% (+/-0.68%)

93.48% (+/-0.50%)
85.48% (+/-4.71%)

DenseNet 121

Binary accuracy
86.44% (+/-1.47%)
78.35% (+/-11.89%)
91.40% (+/-0.75%)
93.48% (+/-0.50%)
77.45% (+/-6.91%)

MAE
0.16 (+/-0.04)
0.15 (+/-0.02)
0.08 (+/-0.01)

0.07 (+/-0.01)
0.16 (+/-0.05)

MAE
0.17(+/-0.02)
0.25(+/-0.11)
0.11(+/-0.01)
0.07(+/-0.01)
0.26(+/-0.07)

AP
0.213
0.206

0.19

0.207
0.191

AP
0.221
0.179

0.21
0.21
0.21

AUC
0.831
0.827
0.776

0.78
0.79

AUC
0.826
0.779

0.813
0.802
0.826
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Combination method selection

B |n training process the method “mixed model” has the best performance,
but it doesn’t reflect in the testing process.

B For ResNet 50 the regular transfer learning performs the best.

B For DenseNet 121 the performance of co-trained is tied for first with the
regular transfer learning.

B The performance after combination is better, especially for DenseNet 121.

32



Conclusion

Subject Contents Results
ResNet50 Regular transfer learning
Backbone model
DenseNet121 Mixed model and co-trained model
Source datasets RGNS, CheXr%eyrt MU ez 2 NIH chest X-ray
Regular transfer-learning, Mixed ResNet50 for Regular transfer-
Combination method model, learning
Co-trained model DenseNet121 for Co-trained model

B Single dataset is suitable for ResNet 50 and combined dataset is suitable
for DenseNet 121.
B Aclean label and closed domain to our target data performs better.

B No matter which way we choose to combine datasets, the result is better.
33




The End !

Thank you !
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